

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Protective Coatings | Materials Selection | Cathodic Protection | >>>

Contact Us for Licensing Details

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

Features and Functions of ACE - Apps for Corrosion Engineers

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

ACE is a collection of 16 essential corrosion software applications for daily use by corrosion engineers, corrosion researchers, and corrosion technicians in laboratories and in fields. ACE can significantly increase the efficiency, productivity, consistency and accuracy of corrosion related calculations, conversions, CP survey data assessment, materials selection, and corrosion prediction. ACE helps you do more in less time with practically everything related to corrosion. If you cannot find the features you want in ACE, do let us know and we will add the features for you to ACE free-of-charge for licensed users.

Figure 1 below shows the screen shot of ACE. There are 16 modules under the respective Tabs in ACE.

CRU: Corrosion Rate Unit Converter - Converting between all corrosion rate units for all metals and alloys.

- REF: Reference Electrode Potential Converter Converting measured potentials at measurement temperatures to equivalent potentials at 25°C vs. reference electrodes commonly used in labs and in fields.
- WhatGas: Predicts what gas will be evolved in on an electrode surface.
- CP-Pol: Cathodic Polarization Assessment and Corrosion Rate Calculation Assessing the effect of CP polarization on the corrosion rate when CP is ON. This software tool can be used to optimize cathodic protection design, to determine cathodic protection criteria, and to evaluate CP survey data.
- DO: Dissolved Oxygen Calculator Calculation of dissolved oxygen in water at a specified temperature (oxygen solubility, oxygen saturated waters), calculation of diffusion limiting current density, prediction of the maximum oxygen corrosion rate.
- DewPoint: Calculation of Dew Point of flue gas.
- Metallurgy: Assessing the Effect of Metallurgy on Corrosion

There are 5 sub-modules under the metallurgy Tab:

ACE-FER: Ferrite Content Predictor - Determining the ferrite content in cast stainless and alloys and the resistance to stress corrosion cracking.

ACE-Sigma: Modeling and prediction of susceptibility to sigma phase formation in stainless steels and alloys.

ACE-PWHT: Post-Weld Heat Treatment - Predict the equivalent carbon content and the requirement for pre-heating or post-weld heat treatment.

ACE-FAC: Flow-Accelerated Corrosion - Predict the resistance to flow-accelerated corrosion.

ACE-CRA: Corrosion Resistant Alloys - Predict the pitting resistance equivalent number (PREN) of

corrosion resistant alloys, predict the application limits for temperature and chloride concentration.

- MMM: Mole and Molar Mass Calculator/Converter Calculating/Converting mole and molar mass for all compounds.
- EMF: Electromotive Force Series Table of Standard Potentials at 25°C.
- GSeries: Galvanic Series Table of Galvanic Series in Natural Sea Water.
- PTable: Periodic Table of Elements
- GUC: General Units Converter Converting between metric and English units.

Apps for Corros	ion Eng	gineers							\varTheta Profi	ile 🕩	Logout
CRU REF	WhatGa	is CP-Pol	DO [DewPoint	Metallurgy	EMF	GSeries	MMM	PTable	GUC	
		ACE - CR	U: Apps for	C orrosion	E ngineers	- C orrosio	on R ate Un	it C onvert	er		
CorrRateUn	itConvert	er converts betw	een all	From	μA/cm ²	То	mpy	μm/y	mm/y	gmd	mdd
corrosion ra	te units f	or all metals and	alloys.		1.0000	=	0.5454	13.8541	0.0139	0.1828	1.8285
μ	A/cm ² : I	micro-ampere pe	r cm ²	From	mdd	То	mpy	μm/y	mm/y	gmd	μA/cm ²
	mpy: I	milli-inch per yea	r		1.0000	=	0.2983	7.5768	0.0076	0.1000	0.5469
	μm/y: ι	micrometer per y	ear	From	gmd	То	mpy	μm/y	mm/y	μA/cm ²	mdd
	mm/y: I	millimeter per ye	ar		1.0000	=	2.9830	75.7676	0.0758	5.4690	10.0000
	gmd: g	gram per m ² per	day	From	μm/y	То	mpy	μA/cm ²	mm/y	gmd	mdd
	mdd: I	milligram per dm	² per day		1.0000	=	0.0394	0.0722	0.0010	0.0132	0.1320
Select a metal o	or alloy:	Ti-3Al-8V-6Cr-4	Mo-4Zr	From	mpy	То	μA/cm ²	μm/y	mm/y	gmd	mdd
					1.0000	=	1.8334	25.4000	0.0254	0.3352	3.3524
User-Defined Al	loy	Use default den	sity, g/cm3 🗸		M1 ~ M10	: Metallic Ele	ements in the	e User-Define	ed Alloy		
Metallic Elemen	nts	Fe	Cr	Ni	Мо	M5	M6	M7	M8	М9	M10
Weight%		68.5000	19.0000	10.0000	2.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 1 Overview of ACE - Apps for Corrosion Engineers

Detailed Feature Description of Apps for Corrosion Engineers

CRU: Corrosion Rate Unit Converter - Converting between All Corrosion Rate Units for All Metals and Alloys

Corrosion rate units commonly reported in the corrosion literature include:

- micro-ampere per cm²: μ A/cm²,
- milli-inch per year: mpy,
- micrometer per year: μm/y,
- millimeter per year: mm/y,
- gram per m² per day: gmd,
- milligram per dm² per day: mdd

Converting the corrosion rate from one unit to another for comparison and for engineering applications is frequently required for numerous metals and alloys. For a given alloy, the conversion factors are different for each unit (μ A/cm², mpy, μ m/y, mm/y, mdd, gmd); for a given unit conversion (e.g. mdd => mpy), the conversion factors are different for different alloys which are influenced by the density, chemical compositions, atomic mass of elements, and the valence of metallic elements in the alloy. Manual conversion requires multiple steps of calculation using a set of equations. The procedure is time-consuming and prone to errors, particularly for many engineering alloys that contain multiple metallic elements in their chemical compositions. Try to manually convert a corrosion current density of $1 \mu A/cm^2$ to mm/y for the titanium alloy Ti-3Al-8V-6Cr-4Mo-4Zr and see for yourself how long it takes you to get an accurate conversion.

ACE-CRU -Corrosion Rate Unit Converter is the only device and OS independent software tool on the market for instantly converting between all corrosion rate units for all metals and alloys with precision. Users simply choose the metal or alloy from the list and the conversion between all corrosion rate units for the selected alloy is instantly displayed (Figure 1). If a metal or alloy is not available in the database, users can easily define their own alloys for the conversion (Figure 2).

	ACE - CR	U: Apps for (Corrosion	Engineers	- C orrosio	n R ate Un	it C onvert	er		
CorrRateUnitConver	ter converts betw	een all	From	μA/cm ²	То	mpy	μm/y	mm/y	gmd	mdd
corrosion rate units	for all metals and	alloys.		1.0000	=	0.4134	10.5002	0.0105	0.2267	2.2670
μA/cm ² :	micro-ampere pe	er cm ²	From	mdd	То	mpy	μm/y	mm/y	gmd	µA/cm ²
mpy:	milli-inch per yea	r		1.0000	=	0.1824	4.6317	0.0046	0.1000	0.4411
μm/y:	micrometer per y	ear	From	gmd	То	mpy	μm/y	mm/y	μA/cm ²	mdd
mm/y:	millimeter per ye	ar		1.0000	=	1.8235	46.3172	0.0463	4.4111	10.0000
gmd:	gram per m ² per	day	From	μm/y	То	mpy	µA/cm ²	mm/y	gmd	mdd
mdd:	milligram per dm	² per day		1.0000	=	0.0394	0.0952	0.0010	0.0216	0.2159
Select a metal or alloy:	User-Defined	~	From	mpy	То	μA/cm ²	μm/y	mm/y	gmd	mdd
Define your own metal or	alloy below:			1.0000	=	2.4190	25.4000	0.0254	0.5484	5.4839
User-Defined Alloy	Use default der	nsity, g/cm3 🗸		M1 ~ M10:	Metallic Ele	ements in the	e User-Define	d Alloy		
Metallic Elements	Fe	Cr	Ni	Мо	M5	M6	M7	M8	M9	M10
Weight%	71.5000	18.0000	8.0000	2.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 2 User-Defined Alloy in Corrosion Rate Units Converter

ACE-CRU Corrosion Rate Units Converter provides error-free conversion conforming to relevant ISO, ASTM and NACE standards. Current database in ACE-CRU Corrosion Rate Units Converter contains the following metals and alloys:

Aluminum and Aluminium Alloys

Aluminum

- AA1100 (A91100)
- AA1199 (A91199)
- AA2024 (A92024)
- AA2060 (A92060)
- AA2219 (A92219)
- AA3003 (A93003)
- AA3004 (A93004)

- AA5005 (A95005)
- AA5050 (A95050)
- AA5052 (A95052)
- AA5083 (A95083)
- AA5086 (A95086)
- AA5154 (A95154)
- AA5357 (A95357)
- AA5454 (A95454)
- AA5456 (A95456)
- AA6061 (A96061)
- AA6062 (A96062)
- AA6070 (A96070)
- AA6101 (A96101)
- AA7050 (A97050)
- AA7072 (A97072)
- AA7075 (A97075)
- AA7079 (A97079)
- AA7178 (A97178)

Copper and Copper Alloys

Copper

- CDA110 (C11000)
- CDA220 (C22000)
- CDA230 (C23000)
- CDA260 (C26000)
- CDA280 (C28000)
- CDA442 (C44200)
- CDA443 (C44300)
- CDA444 (C44400)
- CDA510 (C51000)
- CDA524 (C52400)
- CDA608 (C60800)
- CDA612 (C61200)

- CDA655 (C65500)
- CDA687 (C68700)
- CDA706 (C70600)
- CDA710 (C71000)
- CDA715 (C71500)
- CDA752 (C75200)

Stainless Steels and Alloys

- 201 (S20100)
- 202 (S20200)
- 302 (\$30200)
- 304 (S30400)
- 304L (S30403)
- 304LN (S30453)
- 309 (\$30900)
- 310 (S31000)
- 311 (S31100)
- 316 (S31600)
- 316L (S31603)
- 316LN (S31653)
- 317 (S31700)
- 317L (S31703)
- 317LMN (S31726)
- 321 (S32100)
- 329 (S32900)
- 330 (N08330)
- 347 (S34700)
- 410 (S41000)
- 430 (S43000)
- 446 (S44600)
- 502 (S50200)
- PH13-8 (S13800)
- PH15-5 (S15500)

PH17-4 (S17400)

254SMO (S31254)

654SMO (S32654)

Nicrofer 3228 NbCe (S33228)

Nicrofer 2509 Si7 (S70003)

Ferralium 255 (S32550)

Zeron 100 (S32760)

7Mo Plus (S32950)

2RE69 (S31050)

3RE60 (S31500)

44LN (S31200)

IN-744 (S31100)

Uranus 50 (S32404)

Uranus B66 (S31266)

- DP-3W (S39274)
- Monit (S44635)

2205 (S31803)

- 2304 (\$32304)
- 2507 (S32750)

2707 HD (S32707)

Sea-Cure (S44660)

Nickel and Nickel Alloys

Nickel

200 (N02200)

400 (N04400)

600 (N06600)

Inconel 625 (N06625)

Incoloy 825 (N08825)

Hastelloy B (N10001)

Hastelloy B-2 (N10665)

Hastelloy C (N10002)

Hastelloy C-4 (N06455)

Hastelloy C-22 (N06022) Hastelloy C-2000 (N02000) Hastelloy C-276 (N10276) Alloy 20 (UNS N08020) Hastelloy G (N06007) Hastelloy G-3 (N06985) Hastelloy G-30 (N06030) 20Cb-3 (N08020) 20Mo-4 (N08024) 20Mo-6 (N08026) AI-6X (N08366) AL-6XN (N08367) 904L (N08904) Allcorr (N06110) Sanicro 28 (N08028) Cronifer 1925 hMo (N08925) Nicrofer 5923 hMo (N06059) Inconel 686 (N06686) Inconel 690 (N06690) JS700 (N08700)

Carbon Steels, Cast Irons and Low Alloy Steels

Carbon Steels

Low Alloy Steels

Gray Cast Iron

Silicon Cast Iron

Titanium and Alloys

Titanium (unalloyed)

Ti-3Al-2.5V

Ti-5Al-2.5Sn

Ti-6Al-2Sn-4Zr-2Mo

Ti-6Al-6V-2Sn

Ti-6Al-4V

Ti-6Al-7Nb

Ti-5Al-2Zr-2Sn-4Mo-4Cr

Ti-6Al-2Sn-4Zr-6Mo

Ti-4.5Al-3V-2Mo-2Fe

Ti-4Al-4Mo-2Sn-0.5Si

Ti-10V-2Fe-3Al

Ti-3Al-8V-6Cr-4Mo-4Zr

Metals Aluminium Cadmium Copper Chromium Iron Lead Molybdenum Nickel Silver Gold Palladium Platinum Tantalum Tin Titanium Zinc Zirconium

Magnesium and Magnesium Alloys

Magnesium

AZ63

AZ31

AZ33

AZ81
AZ91
AM60
AM50
AM20
AS41
AS21
ZK51
ZK61
ZE41
ZC63
EZ33
НК31
HZ32
QE22
QH21
WE54
WE43
M1
AZ31
AZ61
AZ80
ZM21
ZMC711
LA141
ZK31
ZK61
HK31
HM21
HZ11

User-Defined Alloy

Users can define their own alloy for the conversion by entering the chemical composition (wt%) of the metallic elements in the alloy. ACE-CRU Corrosion Rate Units Converter instantly displays the results of the conversion between all corrosion rate units, saving users' time and effort.

Application Example

Weight loss coupon test for magnesium alloy AZ61 reported a corrosion rate of 1.123 mdd.

What is the equivalent corrosion current density in uA/cm²?

What is the corrosion rate expressed in um/y?

What is the corrosion rate expressed in mpy?

Answers to the above are instantly available (Figure 3) after selecting the alloy AZ61 from the dropdown list and entering the weight loss data "1.123" in the "mdd" field:

The equivalent corrosion current density is 1.0472 uA/cm².

The corrosion rate in um/y is 22.7844.

The corrosion rate in mpy is 0.897.

Apps	for Corrosi	on Eng	gineers							\rm e Profi	ile 🕩	Logout
CRU	REF \	WhatGa	is CP-Pol	DO D	ewPoint	Metallurgy	EMF	GSeries	MMM	PTable	GUC	
			ACE - CR	U: Apps for	C orrosion	Engineers	- C orrosio	on R ate Un	it C onvert	er		
	CorrRateUnit	tConvert	er converts betw	een all	From	μA/cm ²	То	mpy	μm/y	mm/y	gmd	mdd
	corrosion rat	e units f	or all metals and	alloys.		1.0000	=	0.8566	21.7575	0.0218	0.1072	1.0724
	μA	x/cm²: ۱	micro-ampere pe	r cm ²	From	mdd	То	mpy	μm/y	mm/y	gmd	μA/cm ²
		mpy: I	milli-inch per yea	r		1.1230	=	0.8970	22.7844	0.0228	0.1123	1.0472
		μm/y: ι	micrometer per y	ear	From	gmd	То	mpy	μm/y	mm/y	μA/cm ²	mdd
	r	mm/y: ı	millimeter per ye	ar		1.0000	=	7.9877	202.8888	0.2029	9.3250	10.0000
		gmd: g	gram per m ² per	day	From	μm/y	То	mpy	μA/cm ²	mm/y	gmd	mdd
		mdd: I	milligram per dm	² per day		1.0000	=	0.0394	0.0460	0.0010	0.0049	0.0493
Se	elect a metal or	alloy:	AZ61	~	From	mpy	То	μA/cm ²	μm/γ	mm/y	gmd	mdd
						1.0000	=	1.1674	25.4000	0.0254	0.1252	1.2519
Us	er-Defined Alle	оу	Use default der	nsity, g/cm3 🗸		M1 ~ M10	: Metallic Ele	ements in the	e User-Define	d Alloy		
M	Ietallic Elemen	ts	Fe	Cr	Ni	Мо	M5	M6	M7	M8	M9	M10
	Weight%		68.5000	19.0000	10.0000	2.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 3 Converting Corrosion Rate for Magnesium Alloy AZ61

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

REF: Reference Electrode Potential Converter - Converting measured potentials at measurement temperatures to equivalent potentials at 25°C vs. reference electrodes commonly used in labs and in fields.

	ACE -REF:	Apps for C	Corrosion Engine	eers - Ref e	erence Elec	trode Pote	ntial Conve	erter	
SSC_SJ:	Ag-AgCl solid junct	tion (0.6M)		Standard	Reference Ele	ctrode Potent	tials at 25°C (S	SHE), V	
SSC_LI:	Ag-AgCl liquid jund	tion (sat.)	CSE	SCE	SSC_SJ	SSC_LJ	ZRE	SHE	User's Ref
ZRE:	Zinc Reference Ele	ctrode	0.316	0.241	0.256	0.222	-0.800	0.000	0.288
Measurement	Temperature, °C	45	Eq	uivalent Pot	entials at 25°(C vs. Respectiv	ve Reference B	Electrode, V	
From	CSE (45°C)	То	CSE (25°C)	SCE	SSC_SJ	SSC_LI	ZRE	SHE	User's Ref
	-0.850	=	-0.832	-0.757	-0.772	-0.738	0.284	-0.516	-0.804
From	SCE (45°C)	То	SCE (25°C)	SSC_SJ	SSC_LI	ZRE	CSE	SHE	User's Ref
	-0.775	=	-0.789	-0.804	-0.770	0.252	-0.864	-0.548	-0.836
From	SSC_SJ (45°C)	То	SSC_SJ (25°C)	SSC_LJ	ZRE	CSE	SCE	SHE	User's Ref
	-0.790	=	-0.797	-0.763	0.259	-0.857	-0.782	-0.541	-0.829
From	SSC_LJ (45°C)	То	SSC_LJ (25°C)	ZRE	CSE	SCE	SSC_SJ	SHE	User's Ref
	-0.756	=	-0.770	0.252	-0.864	-0.789	-0.804	-0.548	-0.836
From	ZRE (45°C)	То	ZRE (25°C)	CSE	SCE	SSC_SJ	SSC_LJ	SHE	User's Ref
	0.266	=	0.266	-0.850	-0.775	-0.790	-0.756	-0.534	-0.822
From	SHE (45°C)	То	SHE (25oC)	CSE	SCE	SSC_SJ	SSC_LJ	ZRE	User's Ref
	-0.534	=	-0.534	-0.850	-0.775	-0.790	-0.756	0.266	-0.822
From	User's Ref (45°C)	То	User's Ref (25°C)	CSE	SCE	SSC_SJ	SSC_LI	ZRE	SHE
	-0.822	=	-0.822	-0.850	-0.775	-0.790	-0.756	0.266	-0.534
-			the table above, yo		-	ctrode			
for the conver	rsion. Please enter	the following	; information on you	ir reference e	electrode:				
N	ame of User-Define	ed Electrode:	User's Ref						
Sta	ndard Potential at 2	25°C (SHE), V	0.288						
	Temperature Coeffi	icient, mV/°C	-0.433	<== This is no	ot required if t	the measured	potential is a	t 25°C.	

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 4 ACE-REF Reference Electrode Potential Converter with Temperature Correction

Corrosion laboratories worldwide use a variety of reference electrodes for specific reasons. National and International cathodic protection standards use different reference electrodes for specifying cathodic protection criteria. Copper copper-sulphate electrode (CSE) is specified for cathodic protection of underground structures such as pipelines and storage tanks; silver-silver chloride electrode (SSC) is specified for cathodic protection of structures immersed in seawater; saturated calomel electrode (SCE) is most widely used in laboratories. Electrode potentials are sensitive to temperature. Potentials measured at temperatures other than 25°C have to be converted to equivalent values for cross-referencing and comparison. For example, Cathodic protection potential survey data are collect in the fields at seasonal temperatures (not the standard 25°C). It is essential that the CP system meets the protection criteria that is referenced to -0.85 V (CSE) at 25°C for a buried pipeline. The ACE-REF module instantly converts the measured potential at the measurement temperature to the equivalent potential at 25°C on commonly used reference electrode scale, or an user-defined reference electrode scale.

Try to manually convert the potential of -0.850 V (CSE) measured at 45°C to the potential at 25°C on the SSC (SJ) scale and see how long it takes to get an accurate conversion. In ACE-REF, it take less than a second and the conversion is done for all common reference electrodes used in labs and in fields. In this example, the reading of -0.85 V (CSE) at 45°C does not meet the CP protection criteria as the equivalent potential at 25°C is

-0.832 V (CSE), as shown in Figure 4 above. In contrast, a potential reading of -0.837 V CSE) at 10°C meets the cathodic protection criteria as the equivalent potential at 25°C is -0.850 V (CSE), as shown in Figure 5.

	ACE -REF:	Apps for C	Corrosion Engine	eers - Ref e	erence Elec	trode Pote	ntial Conve	erter	
SSC_SJ	: Ag-AgCl solid junct	tion (0.6M)		Standard	Reference Ele	ctrode Potent	tials at 25°C (S	ihe), V	
SSC_LI	: Ag-AgCl liquid jund	ction (sat.)	CSE	SCE	SSC_SJ	SSC_L	ZRE	SHE	User's Ref
ZRE	: Zinc Reference Ele	ctrode	0.316	0.241	0.256	0.222	-0.800	0.000	0.288
Measurement	Temperature, °C	10	Eq	uivalent Pot	entials at 25°	C vs. Respectiv	ve Reference E	Electrode, V	
From	CSE (10°C)	То	CSE (25°C)	SCE	SSC_SJ	SSC_LI	ZRE	SHE	User's Ref
	-0.837	=	-0.850	-0.775	-0.791	-0.757	0.266	-0.535	-0.822
From	SCE (10°C)	То	SCE (25°C)	SSC_SJ	SSC_U	ZRE	CSE	SHE	User's Ref
	-0.775	=	-0.765	-0.780	-0.746	0.276	-0.840	-0.524	-0.812
From	SSC_SJ (10°C)	То	SSC_SJ (25°C)	SSC_LI	ZRE	CSE	SCE	SHE	User's Ref
	-0.790	=	-0.785	-0.751	0.271	-0.845	-0.770	-0.529	-0.817
From	SSC_LJ (10°C)	То	SSC_⊔ (25°C)	ZRE	CSE	SCE	SSC_SJ	SHE	User's Ref
	-0.756	=	-0.746	0.276	-0.840	-0.765	-0.780	-0.524	-0.812
From	ZRE (10°C)	То	ZRE (25°C)	CSE	SCE	SSC_SJ	SSC_LI	SHE	User's Ref
	0.266	=	0.266	-0.850	-0.775	-0.790	-0.756	-0.534	-0.822
From	SHE (10°C)	То	SHE (25oC)	CSE	SCE	SSC_SJ	SSC_LI	ZRE	User's Ref
	-0.534	=	-0.534	-0.850	-0.775	-0.790	-0.756	0.266	-0.822
From	User's Ref (10°C)	То	User's Ref (25°C)	CSE	SCE	SSC_SJ	SSC_L	ZRE	SHE
	-0.822	=	-0.822	-0.850	-0.775	-0.790	-0.756	0.266	-0.534
If you cannot	find the reference	electrodes in	the table above, yo	u can define	your own ele	ctrode			
for the conve	rsion. Please enter	the following	information on you	ir reference e	electrode:				
N	lame of User-Define	ed Electrode:	User's Ref						
Sta	andard Potential at :	25°C (SHE), V	0.288						
	Temperature Coeff	icient, mV/°C	-0.433 <	<== This is no	t required if t	he measured	potential is at	t 25°C.	

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 5 ACE-REF Reference Electrode Potential Converter for Cathodic Protection Applications

ACE-REF can literally be a life-saver for cathodic protection contractors, cathodic protection technicians, cathodic protection technologists who are involved in meeting both the technical and the contractual requirements of cathodic protection criteria. Facility owners can use ACE-REF to instantly verify if the CP survey data meet the protection criteria at a specific location and in a specific season.

Users of ACE-REF can easily define their own Reference Electrode scale for conversion. In Figures 4 and 5 above, the user-defined reference electrode named "User's Ref" has a standard potential of 0.288 V (SHE) at 25°C with a temperature coefficient of -0.433 mV/°C.

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

WhatGas: Predicts what gas will be evolved on an electrode surface

In an electrolyte of pH7 at 25°C, O2 gas will be evolved on the electrode surface if the electrode potential (vs. SCE) is 0.650 V.

Apps	for Corro	osion Engine	eers					e	Profile	€) Lo	gout
CRU	REF	WhatGas	CP-Pol	DO	DewPoint	Metallurgy	EMF	GSeries	MMM	PTable	GUC
	ACE - What	tGas: What Gas	O2 or H2 Wil	l Be Evolve	ed in Corrosior	?					
		Te	emperature	°C	25	.000					
		pH of	Electrolyte	рН	7.	000					
		Electrode Pote	ential (SCE)	v	0.	650					
		O2 ga	s evolution or	cours.							

Figure 6 ACE-WhatGas predicts what gas will be evolved on an electrode surface during electrochemical reactions.

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

CP-Pol: Cathodic Polarization Assessment and Corrosion Rate Calculation - Assessing the effect of CP polarization on the corrosion rate when CP is ON.

This software tool can be used to optimize cathodic protection design, to determine cathodic protection criteria, and to evaluate CP survey data.

CRU	REF	CP-Pol	DO	Metallurgy	EMF	GSeries	MMM	PTable	GUC
		ACE - CP-Pol:	CP Pola	arization and Corros	ion Rate				
		Effect of Cat	hodic Pr	rotection on Corros	on Rate				
		Tempera	ture:	°C		10.00			
	Corros	sion Rate (No	CP):	mm/y		0.2500			
	Cath	odic Polariza	tion:	mV		100			
		Tafel s	lope:	V	Default	•	•		
		User-defi	ined:	V		0.120			
	CorrRate	Reduction fa	ctor:			60			
	Corro	sion Rate (CP	on):	mm/y	0	0.004146			

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 7 CP-Pol: Assessing the effect of CP polarization on the corrosion rate when CP is ON.

An user simply enters the temperature and cathodic polarization, CP-Pol calculates the corrosion rate reduction factor. If the native corrosion rate (no CP) is known (typically less than 0.25 mm/y in soil or seawater), the corrosion rate when CP is on is calculated. CP-Pol allows users to enter the Tafel slope value for use in the computation.

DO: Dissolved Oxygen Calculator

This software tool helps you with the following tasks:

- calculation of dissolved oxygen in waters and other aqueous process fluids at a specified temperature,
- prediction of oxygen diffusion limiting current density,
- prediction of the maximum oxygen corrosion rate for carbon steels.

CRU	REF	CP-I	Pol	DO	Meta	allurgy	EMF	GS	eries	MMM	PTable	GUC
		ACE	- DO:	Dissolv	ed Oxy	gen and	Diffusion I	imitir	ng Curre	nt Density	,	
Ent	er Salinity	~	Ter	nperatu	ıre	Disso	lved Oxyge	n	Diffu	sion Limitir	ng Current De	ensity
	‰			°C			ppm			μA	/cm ²	
	33.00			25.00			6.85			25	5.39	
The may	kimum corre	osion	rate of s	steels u i	nder Oź	2 diffusio	n control, n	nm/y		0.	295	
	The r						he area rat Iltiplied by			o anode. anode are	a ratio.	

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 8 Calculation of Dissolved Oxygen in Waters at a Specified Temperature.

Users have complete flexibility in defining the fluid by entering either the salinity, or conductivity, or TDS, or just select one of the waters without the need to have the water analysis results.

CRU	REF	CP-	Pol	DO	Met	allurgy	EMF	GS	Series	MMM	PTable	GUC	
		AC	E - DO	: Dissolv	ed Oxy	gen and	Diffusion	Limiti	ng Curre	nt Density	1		
Ent	ter Salinity	~	Т	emperati	ure	Disso	lved Oxyge	en	Diffu	ision Limitii	ng Current De	ensity	
Enter Sa	alinity			°C			ppm			μA	/cm ²		
Enter Co Enter TI	onductivity DS			25.00		6.85				25.39			
Ultrapur	e Water		rate of	f steels u	nder O	2 diffusio	n control, r	nm/y		0.295			
Deionize RO Wat	ed Water er						he area ra ultiplied by			o anode. anode are	a ratio.		
Drinking			ACE - J	Apps for C	orrosior	n Engineers	. We Work I	Harder	to Make 1	Your Life Eas	ier, in Labs and	l in Fields.	
Freshwa Brackish													
Seawate	er	_											

Figure 9 Calculation of Dissolved Oxygen and O2 Diffusion Limiting Current Density in Waters at a Specified Temperature.

The solubility of oxygen in water is dependent on both temperature and salinity (salt concentration). The oxygen diffusion limiting current density and the corresponding corrosion rate in mm/y for carbon steels are predicted in this module. An user can use the CRU module to convert the diffusion limiting current density to the preferred corrosion rate unit for any metal or alloy.

DewPoint: Dew Point of flue gas calculator - Predicting the dew points of flue gas: HBr, HCl, HF, NO2, SO2, SO3, and H2O

CRU	REF	CP-Pol	DO	DewPoint	Metallurgy	EMF
	ACE	-DewPoint: D	ew Point of	Flue Gas Calo	ulator	
			Select a ga	s HCl		~
		Partial Pre	ssure of HC	l mm Hg	2.280	
		Partial pres	sure of H20	D mm Hg	76.000	
D	ew Point c	of Hydrochlor	ic Acid (HCl) °C	56.827	
CRU	REF	CP-Pol	DO	DewPoint	Metallurgy	EM
	ACE	-DewPoint: D	ew Point of	f Flue Gas Calo	culator	
			Select a ga	5 503		\sim

			Select a g	gas	SO3			~
		Partial Pre	ssure of S	03	mm Hg		2.280	
		Partial pres	ssure of H	20	mm Hg	76.000		
	Dew Poin	t of Sulfuric A	Acid (H2SC	94)	°C		203.049	
CRU	REF	CP-Pol	DO		DewPoint	1	Metallurgy	Е

ACE-DewPoint: Dew Point of Flue Gas Calculator								
Select a gas	HF	~						
Partial Pressure of HF	mm Hg	2.280						
Partial pressure of H2O	mm Hg	76.000						
Dew Point of Hydrofluoric Acid (HF)	°C	50.869						

Figure 10 Predicting Dew Point of Flue Gas

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

Metallurgy: Predicting the Effects of Metallurgy on Corrosion

There are 4 sub-modules under the metallurgy Tab:

ACE-FER: Ferrite Content Predictor - Determining the ferrite content in cast stainless and alloys and the

resistance to stress corrosion cracking.

An user can define customized alloy. ACE-FER predicts the ferrite content (%volume) in the cast

microstructure and the resistance to stress corrosion cracking (SCC).

ACE-Sigma: Modeling and prediction of the susceptibility to sigma phase formation in stainless steels and

alloys.

CRU	REF	WhatGa	as CP	P-Pol D	O DewP	Point	Metallurgy	EMF	GSeries	MMM	PTable	GUC		
ACE - FER: Ferrite Content in Cast Stainless Steels and Alloys														
Nominal Chemical Composition of Alloys Ferrite Content, S												t, %Vol.		
	Cast Alloy	Cr	Si	Мо	Nb	Ni	С	Mn	N	Lower	Upper			
CF3M	(316L) 🗸	19.00	2.00	2.50	0.00	10.00	0.03	1.50	0.00	19.13	26.83	36.81		
	For user-defined alloy, enter the chemical composition below Resistance											e to Stress Corrosion Cracking		
	MyAlloy	18.00	1.00	0.00	0.00	8.00	0.08	0.00	0.00	High resistance to SCC				
	ACE-Sigma: Sigma Phase Formation in Stainless Steels and Alloys													
2507 V For user-defined alloy, enter the chemical composition below														
	MyAlloy	Cr	Si	Мо	Nb	Ni	С	Mn	N	This alloy is highly susceptible				
		18.00	1.00	0.00	0.00	8.00	0.08	0.00	0.00	to sigma phase formation.				
	(CC) and PWH				r	ccelerated Corrosion Resistance Index				
Stee	l Grade	SA516	5-70N	Chem	nical Composi	ition		C %	0.17	Cr Equivalent		t 0.030		
	С	Мо	Cr	Mn	Cu	Ni		Cu %	0.02	FAC Index: R _K		× 0.767		
0	0.10	0.08	0.30	1.00	0.30	0.30		Cr %	0.05	This metallurgy is not				
E	ECC	0.39 PWHT is not required.						Mo %	0.01	resistant to FAC.				
				ACE - CF	RA: Corrosion	Resistar	nt Alloys - Sele	ection and A	oplication Lim	its				
	-						perature and pitting, crevio			CRAs				
	-	Select an Alloy User-Defined-Alloy V						N (ISO 15156						
			lf an a	alloy is not ir	the list, choo	ose "Use	r-Defined-Allo	oy" and ente						
	Fe% Cr%		Ni%	Mo%	W%	N%	Cu%	Ti%	Nb%	С%				
		70.000	18.000	9.000	2.500	0.000	0.000	0.000	0.000	0.000	0.080			
If the input is temperature, the output will be the application limit of chloride concentration.														
	_	Select Input Temperature 🗸			°C	65.00	Maximum [Cl-], ppm 4289							
			lf the	input is chloi	ride concentro	ation, th	e output will Ł	pe the applic	ation limit of a	temperature.				

Figure 11 Assessing the Effect of Metallurgy on Corrosion

ACE-PWHT: Post-Weld Heat Treatment - Predict the equivalent carbon content (ECC) and the requirement for pre-heating or post-weld heat treatment.

ACE-FAC: Flow-Accelerated Corrosion - Predict the chromium equivalent and the resistance to flow-

accelerated corrosion.

ACE-CRA: Corrosion Resistant Alloys - Predict the pitting resistance equivalent number (PREN) of corrosion resistant alloys, predict the application limits for temperature and chloride concentration.

MMM: Mole and Molar Mass Calculator/Converter - Calculating/Converting mole and molar mass for all compounds.

Apps for Corrosion Engineers									🕒 Profile 🕞 Logo				
CRU	REF	Wha	atGas	CP-Pol	DO	DewPoint	Metallurgy	EMF	GSeries	MMM	PTable	GUC	
ACE - MMM: Mole and Molecular Mass Converter													
Name	Name of Compound: Polythionic acid				Formula:	H2S5O6							
			Enter the	sumbol of a	lomont on	d the number o	f atoms in the f	armular					

Enter the symbol of element and the number of atoms in the formula.												
н	s	о	E4	E5	E6	E7	E8	E9	E10			
2	5	6										
From	Mole	То	Mass, g		From	Mass, g	То	Mole				
	1.000	=	258.35			258.35	=	1.000				

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Figure 12 Mole and Molar Mass Calculator and Converter

The MMM module works for all elements in the periodic table and all compounds with known formulae.

EMF: Electromotive Force Series - Table of Standard Potentials at 25°C.

GSeries: Galvanic Series - Table of Galvanic Series in Natural Sea Water.

PTable: Periodic Table of Elements

GUC: General Units Converter - Converting between metric and English units.

Click here to contact us for licensing details and experience the power of ACE.

ACE Overview | CRU | REF | WhatGas | CP-Pol | DO | DewPoint | Metallurgy | FER | Sigma | PWHT | FAC | CRA | MMM | EMF | GSeries | PTable | GUC

ACE - Apps for Corrosion Engineers. We Work Harder to Make Your Life Easier, in Labs and in Fields.

Home | Contact Us | PDF

Copyright © 1995-2023. WebCorr Corrosion Consulting Services. All rights reserved.